

Biometric Sensor and Match-On-Card Evaluation platform

Benoît VIBERT, John LEBOUTEILLER, Felix KEITA and Christophe ROSENBERGER

GREYC Research Lab, ENSICAEN - CNRS - University of Caen, FRANCE

NIST International Biometric Performance Testing Conference 2014

- Introduction
- 2 EVABIO Platform
- 3 Illustration
- 4 Conclusion & perspectives

ISO /IEC JTC1 SC37 SD11

Open questions

How to choose a sensor or a MOC algorithm?

Many criteria need to be considered:

- Performance:
- Security;
- Usability;
- Cost.

Evaluation Platform

- NIST Platform (NBIS ...);
- FVC-OnGoing (FVC-OnGoing);
- BEAT European Project(www.beat-eu.org);

Standards

- ISO/IEC 24745 (Security techniques, Biometric information protection);
- ISO/IEC 19794-1 (Conformance testing methodology);
- ISO/IEC TR 29794-4 (Biometric sample quality: Finger image data);
- . . .

Objectives

Define an evalution platform for different purposes.

Industrial

- Help them to choose a MOC or a Sensor;
- Acquire specific biometric databases.

Research

- Propose new attacks on MOC (Fuzzing; HillClimbing);
- Impact on quality metrics to the enrolment;
- Qualifying own MOC algorithm;

Goals

- Evaluating Sensors and MOC;
- Reproducible research results.

Technical architecture

Evaluation module

- Automated generated report;
- Generation of Metrics graphics (ISO 19795) :
 - FTA: Failure To Acquire;
 - FTE : Failure To Enrol ;
 - FNMR : False Non Match Rate :
 - FMR: False Match Rate;
 - Time:
 - ROC Curve:

Quality metrics

- NFIQ (Most Used by Industrial);
- Q by GREYC (Yao & al. 2014);

(a) NFIQ distribution

(b) Q distribution

FIGURE 1: metrics distribution

Attacks on Biometric system (Ratha)

- Fake biometric (Point 1)
- Replay old data (Point 2)

Fake Fingerprint Illustration

Illustration

- Create fake fingerprint database with real fingers and fingerprints
- Used Wax & Gelatin (materials not thick)

Results

- Sensor 1,3 and 4 : FTAR = 0%
 - 96 tests have been performed :
 - 65% led to a negative verification
 - 35% to a positive
- Sensor 2 : FTAR = 100%

Illustration

- Create dead fingerprint database with dead fingers on 4 people
 - 3 sensors
 - 4 fingers (except thumb)
 - 2 hands (left & right)
 - 6 captures / individual / finger/ sensor (144 images and ISO Compact Card II template)
- 576 samples in total
- FTAR = 36.11% (1-(368/576))

Results

Metric Q results				
	Sensor 1	Sensor 2	Sensor 3	Sensor 4
Mortuary	38.3	81.9	72.3	68.3
Senior database	32.1	84	78.6	73.7

(b) Average Q metric value for fingerprint coming from a senior database and the dead fingers one

(a) Acquisition

FIGURE 2: Acquisition and Results

Conclusion

- Proposed a platform for the evaluation of biometric sensors and Match-On-Card algorithm.
- Illustrate two attacks on sensors with the platform
 - Fake Fingerprint : spoofing, FTAR
 - Dead Fingerprint : Lower quality for the data

Perspectives

- Improve the Q metric for fingerprint quality assessment
- Make a new database, more dead and alive fingers

http://www.epaymentbiometrics.ensicaen.fr/

